Mucool Test Area Cryostat & cooling-loop design

Christine Darve

Fermilab/Beams Division/ Cryogenic Department/ Engineering and Design Group

MuCool / MICE

02/21/03

Cryostat design

Specifications

The Linac beam will deposit within the absorber a maximum heat deposition of **150 Watt**

P=1.2 atm,

T = 17 K

 $\Delta \rho < 5\%$

 $\Delta T \sim 1 \text{ K (could be 3 K)}$

Safety gudelines:

- 1. "Guidelines for the Design, Fabrication, Testing, Installation and Operation of LH2 Targets-20 May 1997", Fermilab by Del Allspach et al.
- 2. Fermilab ES&H (5032)
- 3. code/standard ASME, NASA
- 4. NEC (art 500)
- 5. CGA

Materials

1. Caltech LH2 pump

- Max LH2 mass-flow = 450 g/s (0.12 MPa, Tin=17 K)
- $\Delta P \text{ total} < 0.36 \text{ psig}$

References:

"A high power liquid hydrogen target for parity violation experiments", E.J. Beise et al., Research instruments & methods in physics research (1996), 383-391"

2. "MuCool LH2 pump test report", C. Darve and B. Norris, (09/02)

CD

February 21 2003

MuCool/MICE review

Heat load calculations

Legend:	
—	Heat transfer by conduction through supports
	Heat transfer by radiation and through MLI

Heat load (W)	80 K	17 K
Mechanical Supports	67	6
Superinsulation	1.5	0.2
Cryostat windows	-	17
LH2 pump	-	50
Total	68.5	73.2

"Materials list" - Cryostat Design

The MTA cryostat is mainly composed of:

Cryogens used:

- LN2 to cool Thermal shield
- Ghe to cool LH2 cryo-system
- LH2 to cool cryo-system (beam+static)

	P (psia) T(K)		m_max (g/s)		
N2	45.0	77-80	5		
He	32.0	14-17	26		
H2	17.6	17-20	450		

- LH2 Absorber
- Vacuum vessel
- Thermal shield
- > Hydrogen buffer
- Vacuum window
- > Transfer lines
- Safety devices
- Heat exchanger
- LH2 pump
- Motor
- **Supports**
- **Equipment**

Assembly

- ✓ Vacuum vessel: MAWP=25 psig;SS, 16 IPS Sch10, 48 IPS Sch10
 - Dome (SS, 0.25 inch)
 - Plate (SS, 0.25 inch)
 - Central support (1 inch)
- ✓ Thermal shield (AI) +MLI (AI, Mylar)
 - Aluminum braids
 - Aluminum cooling line
- ✓ He, H2 and N2 Piping (SS, 1-2 inch IPS)
- ✓ Hydrogen buffer(SS, φ 3 inch)
- ✓ Vacuum window Flange, Al, SS, Al seal
- ✓ Vacuum pump flange
- Relief vacuum

Pressure safety devices

<u>Pressure relief valve – LH₂: II C 4 a (iii)</u>

- Relief pressure (10 psig or 25 psid)
- Sized for max. heat flux produced by air condensed on the LH₂ loop at 1 atm.

2 valves ACGO ASME code Capacity = 52 g/s => 0.502 inch² Redundant

Pressure relief valve - Insulation vacuum: II D 3

- MAWP (15 psig internal)
- Capable of limiting the internal pressure in vacuum vessel to less than 15 psig following the absorber rupture (deposition of 25 liter in the vacuum space)
- ♦ Vapor evaluation q= 20 W/cm2
- Take into account DP connection piping and entrance/exit losses

3 parallel plates (FNAL design) Calculated Capacity = 197 g/s => 2 inch Redundant

Relief system must be flow tested

MTA Cryostat Design

1. Heat exchanger assembly

- \checkmark Coil (copper, ϕ 0.55 inch)
- Outer shell (SS, 6 inch tube)

2. LH2 pump assembly

- ✓ LH2 pump and shaft with foam
- Motor outer shield

3. Absorber assembly:

- ✓ Black/Wing windows and manifold design
- ✓ Interface of the systems
 - Bimetallic junction
 - Indium Doubled-seal

4. Supports

√ G10 spider and rods

MTA Cryostat Design

6. Equipment

- Pressure transducers
- Temperature sensors
- ✓ Flowmeter
- ✓ Heater
- ✓ Valves and actuators
- ✓ Vacuum pump cart
- ✓ Other instrumentation

Safety constraints:

- N2 guard
- Low excitation current
- Interlocks

- ✓ Minimum spark energies for ignition of H₂ in air is 0.017 mJ at 1 atm, 300 K
- ✓ Lower pressure for ignition is ~1 psia (min abs. 0.02 psia // 1.4 mbar)

Comments/questions

- 1. Cryo-pumping
- 2. Position of cryostat vacuum windows
- 3. Interfaces: atmosphere or vacuum behind cryostat vacuum windows
- 4. Absorber Instrumentation routing and ports

MTA Cryostat design – Conclusions

Cryostat 3D model current focuses:

- ✓ Change orientation of the heat exchanger
- ✓ Final LN2 cooling system
- ✓ Implementation of vacuum windows
- ✓ Heater implementation
- ✓ Supports
- ✓ Instrumentation implementation

Cooling-loop design

(Introduction to Oxford analysis)

CD MuCool/MICE review February 21 2003

Cooling-loop Design

Manifold optimization of nozzle distribution and geometry

Velocity at nozzle

Given geometry, Power and nozzle distribution

Heat transfer coeff.

DT

DP

Flow Simulation by Wing Lau/ Stephanie Yang (Oxford)

- 1. Simulate MTA manifold geometry
- 2. Simulate beam at 150 W (vol. deposition, ø10mm, 3 sigma gaussian)
- 3. Calculate heat transfer coefficients and temperature distribution for MTA conditions (DV ~ 0.5 m/s 4 m/s)

FERMILAB Temperature distribution simulation

BD/Cryogenic Department

By Wing Lau and Stephanie Yang (Oxford)

Model A

11 supply nozzles

15 return nozzles

Nozzle diameter: 0.43 inch

FERMILAB BD/Cryogenic Depa

Temperature distribution simulation

BD/Cryogenic Department By Wing Lau and Stephanie Yang (Oxford)

17.1157

17 . 077 120

17.038521 2

16.999910

Model A

 $V_sup = 2 m/s$

But ...

DP = 90 psi

(DP adm.=76psi)

CFX

FERMILAB BD/Cryogenic Depa

Temperature distribution simulation

BD/Cryogenic Department By Wing Lau and Stephanie Yang (Oxford)

Model A

 $V_sup = 0.5 \text{ m/s}$

Lower limit for the solution with m_dot = 38 g/s

Temperature distribution simulation

BD/Cryogenic Department By Wing Lau and Stephanie Yang (Oxford)

Model B

8 supply nozzles

12 return nozzles

Nozzle diameter: 0.63 inch

Temperature distribution simulation

BD/Cryogenic Department By Wing Lau and Stephanie Yang (Oxford)

Model B V_sup = 2 m/s But ...

 $\Delta P = 0.101 \text{ psi}$

 $(\Delta P \text{ adm.} = 0.119 \text{ psi})$

FERMILAB BD/Cryogenic Department

MTA cooling loop system – Conclusions

	Model A	Model A	Model B	Model C	Model C	Model C
inch	0.43	0.43	0.63	0.60	0.60	0.60
inch	22	22	22	21	21	21
	11	11	8	11	11	11
	15	15	12	15	15	15
g/s	152	38	215	300	75	450
m/s	2.000	0.500	2.000	2.000	0.500	3.039
m/s	1.470	0.370	1.330	0.193	0.370	2.230
psi	90.000	5.900	0.101	0.137	0.009	0.301
psi	76.000	22.000	0.119	0.380	0.036	0.364
K	0.380	1.000	0.150	?	?	?
	g/s m/s m/s psi psi	inch 0.43 inch 22 11 15 g/s 152 m/s 2.000 m/s 1.470 psi 90.000 psi 76.000	inch 0.43 0.43 inch 22 22 11 11 15 15 g/s 152 38 m/s 2.000 0.500 m/s 1.470 0.370 psi 90.000 5.900 psi 76.000 22.000	inch 0.43 0.43 0.63 inch 22 22 22 11 11 8 15 15 12 g/s 152 38 215 m/s 2.000 0.500 2.000 m/s 1.470 0.370 1.330 psi 90.000 5.900 0.101 psi 76.000 22.000 0.119	inch 0.43 0.43 0.63 0.60 inch 22 22 22 21 11 11 8 11 15 15 12 15 g/s 152 38 215 300 m/s 2.000 0.500 2.000 2.000 m/s 1.470 0.370 1.330 0.193 psi 90.000 5.900 0.101 0.137 psi 76.000 22.000 0.119 0.380	inch 0.43 0.43 0.63 0.60 0.60 inch 22 22 22 21 21 11 11 11 8 11 11 15 15 12 15 15 g/s 152 38 215 300 75 m/s 2.000 0.500 2.000 2.000 0.500 m/s 1.470 0.370 1.330 0.193 0.370 psi 90.000 5.900 0.101 0.137 0.009 psi 76.000 22.000 0.119 0.380 0.036

Cooling loop Focuses: Proposed Solution: 11 supply/15 return, Dia 0.6"

The Model A proves that $\Delta T=1K$ is achieved if nozzle velocity is 0.5 m/s

Therefore any configuration with at least 26 nozzles, larger then 0.43 inch diameter will meet our requirement.

Model C will permit us to cross-check the current solution.

Process Instrumentation Diagram

Helium REFRIGERATOR

